github.com/illinois-ceesd /nuwest-mirge

MIRGE: Math — IR — Generation — Execution

Andreas Kloeckner

University of lllinois

January 18, 2024



github.com/illinois-ceesd /nuwest-mirge

Outline

MIRGE



“Programming HPC Machines is Hard”

10,000,000

1,000,000

100,000

10,000

1,000

100

Sustained (streaming)
Memory Bandwidth is falling
behind Peak FLOPS rates,
but every other kind of
memory access is falling
behind even faster....

1995 2000 2005

github.com/illinois-ceesd /nuwest-mirge

2020

[McCalpin, Memory Bandwidth and System Balance in HPC Systems, SC16]

CPUs, GPUs: all subject to similar design pressures

3



github.com/illinois-ceesd /nuwest-mirge

HPC: What do you mean?

Goal:
» Build a quantitative understanding of what is possible
e |.e. use modeling, supported by tools
> lteratively approach that limit, with human involvement

e l.e. not a black-box compiler
o Expect some exposed wiring: understanding required |
e Use modeling as a guide

MIRGE: Ideas and tools to. .. [OpenClipart / raulxav]
> increase human effectiveness and efficiency

> help with separation of concerns



github.com/illinois-ceesd /nuwest-mirge

A Glimpse of Some Results

P Py Py
B PyOpenCL B JAX B Pytato B Roofline

(Simplicial DG for a Compressible Navier-Stokes Operator on Titan V)



MIRGE: Stages of a Computation

Stage 1: Capture an Array DFG Array Context — Pytato
» Goal: Build an Array-Valued Data Flow Graph (DFG)
e By tracing execution of a numpy-ish array program
» Use Lazy Evaluation to do so:

e Feed in (symbolic) placeholder data
e Return an opaque value that ‘remembers’ what was done

Stage 2: Transform the DAG Array Context and Pytato
> E.g. fold constants, apply math simplifications

Stage 3: Rewrite to Scalar IR Pytato — Loopy
P Introduce time, memory, loops

Stage 4: Scalar IR Transformations Array Context and Loopy
> E.g. parallelize, loop/kernel fusion

Stage 5: Emit Target Code Loopy — OpenCL

github.com/illinois-ceesd /nuwest-mirge

B=f(A) C=g(B)

E=f(C) F=h(C)
G=s(EF) P=pB)
Q=q(B) R=r(GPQ)



Numpy: Array programming

Numpy is an array programming language.

What can you do with that?

>

vVvvyvVvYVvyyypy

>

a+b-3

al:, 4] .reshape(10, 1) + b

Compute pairwise distances between point clouds
a[i] where i is an array of indices

a>3

np.where(a > 3, 0, 1)
np.einsum("ij,j->i", a, b)

np.sum(a, axis=0)

np.concatenate((a, b), axis=0)

If familiar: a little like ‘fully vectorized Matlab’

github.com/illinois-ceesd /nuwest-mirge

[XRay Project]



github.com/illinois-ceesd /nuwest-mirge

User-Visible Restrictions (the “-ish” in numpy-ish)

» Data is computed lazily

e “Looking at the data” costly: ask expliclitly (freeze)
e Fine: np.where(x > 15, 1, 0)
e Not fine: if x[0] > 15: print("BAD")
» “In-place” modification is not allowed
e Once created, an array is constant
> Looping over an array is very costly
e Resulting DAG will be proportional to array size

» Does not encode memory layout (i.e. no stride trickery)
[Bootstrap Icons] » For code with pre-recorded traces (“compiled”):
e Python code is only run once
o Needed for repeated tasks (e.g. time step)
e Cannot look at data (run with placeholder arrays)



github.com/illinois-ceesd /nuwest-mirge
Numpy Switcheroo: Array Context
Replacing numpy:

» NOT: import numpy as np — import mystuff as np
» INSTEAD: actx.np.zeros(...)

Why?
» ‘Real’ numpy used alongside, e.g. by supporting libraries
> Avoids np.mystuff(...): The numpy namespace belongs to numpy.
e Natural place for additional API: E.g. actx.freeze()

> Avoids global state for device selection (e.g. Jax)

i Bootstrap lcons
» Can be subclassed by user to supply transform strategies [ !

(actx is a user-controlled instance of a user-controlled subclass of
ArrayContext.)



github.com/illinois-ceesd /nuwest-mirge

The Case for Code Transformation

» Program is a data structure

» Start with ‘math’ (=~ numpy)

» Gradually add detail

» Annotations descriptive, not prescriptive
As opposed to:

» Directives (a la OpenMP/OpenACC)

> Libraries
Properties:

> Separation of concerns:
additive rather than multiplicative effort

[Bootstrap lcons] » Conciseness: code is the enemy

» Abstraction:
not specifying details prematurely is a virtue

10



github.com/illinois-ceesd /nuwest-mirge

The Case for Just-in-Time Compilation

» What is ‘compile time'?
» At runtime is when you have the most information

e Target device
e Desired problem

v

JIT gives ability to specialize for available knowledge

v

Avoids false trade-off beetween generality and cost
(“abstraction penalty”)

» Challenge: JIT cost must remain under control
e At least: Caching easily avoids repeated expense

[Bootstrap Icons]

11



github.com/illinois-ceesd /nuwest-mirge

Loopy: A Glimpse

Npor
ijadjl 33] (Z Uka¢k x]))

7=1

knl = 1lp.make_kernel(
"{[e,i,]j,k]: O<=e<nelements and 0<=i,k<ndofs and 0<=j<nqg}",
quad(e, j) := sum(k, ulk,e] * philk, jI)
ale,i] = sum(j, wl[jl * psili,j] * quad(e, j))
||||||)

Transformations:

knl
knl

lp.split_iname(knl, "e", 128)
lp.tag_inames(knl, {"e_outer": "g.0"})

github.com/inducer/loopy

12



github.com/illinois-ceesd /nuwest-mirge

In the Code-Along

Roadmap for the code-along:
> Let's code a mini pytato

e Expression trees/graphs as program representation
e Lowering to loopy

> Let's build a finite difference solver with the MIRGE stack
> Getting your feet wet with Loopy

13



github.com/illinois-ceesd /nuwest-mirge

Outline

Code-Along

14



github.com/illinois-ceesd /nuwest-mirge

Getting on the Jupyterhub

» Primary (NCSA)
https://ceesd.class.ncsa.illinois.edu/jupyter/

User / Password from paper snippets

» Fallback (Homebrew)
https://andreask.cs.illinois.edu/nuwest
User name: Pick your favorite! / Password: (announced if needed)

15


https://ceesd.class.ncsa.illinois.edu/jupyter/
https://andreask.cs.illinois.edu/nuwest

github.com/illinois-ceesd /nuwest-mirge

Building a Mini Pytato

Notebook: Mini Pytato

16



github.com/illinois-ceesd /nuwest-mirge

Lessons from Mini Pytato

» Graphs are an appropriate data structure for expressions
» A shape axis becomes a loop
» Processing graphs is necessarily recursive

» Naive handling of common subexpressions leads to exponential complexity

17



github.com/illinois-ceesd /nuwest-mirge

Array Comprehensions / IndexLambda

Observation: To define an array, just need

> shape

» a (scalar) expression for array entry array[i, j].
Examples:

» A 10 x 5 array defined by (i,7) — 3i + 5J

» A 10 x 10 array defined by (i, j) — d; ;

» A 10 x 10 array defined by (i, j) — ali, j] + bli]
Idea: Use that

P as a large part of the intermediate representation

> as a pathway toward code generation
(many operations “lower” to scalar expressions)

18



github.com/illinois-ceesd /nuwest-mirge

Pytato vs Mini Pytato

» Computations with multiple results

(DictOfNamedArrays) Reductions (e.g. sums over axes)

einsum, matrix products
Constants (DataWrapper) P

. Metadata (“tags”) on arrays, axes
Many more operators, functions ("tags") y

Visualization

Distributed compute

vVvyvyVvVvyypy

| 2
>
» Arbitrary shapes (including symbolic)
» Broadcasting

>

Slicing, Indexing “Call loopy” as an expression node

19



github.com/illinois-ceesd /nuwest-mirge

Let’s code finite differences

Notebook: Finite Difference Code-Along

20



What is

vVvvyVvyVvyy

actx.
actx.
actx.
actx.
actx.

actx.

an array context?

np

freeze / actx.thaw
np.zeros
from_numpy / actx.to_numpy

tag / actx.tag_axis

compile(f)

21

github.com/illinois-ceesd /nuwest-mirge



github.com/illinois-ceesd /nuwest-mirge

What happens in PytatoPyOpenCLACtx.compile(f)?

Returns a function that

>

vvyyy

v

once called, looks at arguments passed (which maybe array containers)
replaces actx arrays with placeholders
Calls £ with those placeholders

Take the resulting pytato DAG, feed to Loopy

Lastly, call the generated loopy code with the passed arguments
e Return results as actual data (pyoepncl arrays)

If called again with arguments of matching type/shape:

e do not call £
e go straight to calling generated code

22



github.com/illinois-ceesd /nuwest-mirge

What happens in PytatoPyOpenCLACtx.freeze?

» Simple: build code to evaluate computation graph
e Return result as actual data
» No placeholders, only DataWrapper (=constant) instances
e thaw: package data in a DataWrapper
» Try to avoid redundant code generation
e But: expensive! Always at least need to compare (and therefore, traverse!) graphs
» Potential gotchas

e Freeze same graph again: redundant codegen, computation
o Freeze superset graph: redundant codegen, computation

23



github.com/illinois-ceesd /nuwest-mirge

What and why: polyhedral?

Loop nest Polyhedron

doi=1,n

do j=1,n
do k = 1,n-i-k
A(i,j,k) =
B(i,j,k) =
end do
end do
end do N

{[i,j,k]1:0 <= i,j < n and... }

S. Verdoolaege "isl: An integer set library for
the polyhedral model.” International Congress
on Mathematical Software. Springer, Berlin,
Heidelberg, 2010

xgithub. com/inducer/islpy



github.com/illinois-ceesd /nuwest-mirge

Not just sets: also dependencies
Loop domain: {(7,5): 0 <i,j <4Ai<j}cCZ?

Parametric loop domain: n+ {(i,§): 0 <i,j <nAi<j}CZ?
Dependencies: {((3,7), (¢',5')) : ...} c Z*
+ parameter: n+— {((i,5), (@', j') : ...} C Z°

> Way to represent
e sets of integer tuples
e graphs on sets of integer tuples
and operate on them:
I, N, U o c’, \, min, lexmin

» parametrically

» need decidability: (quasi-)affine expr.
e no: i-j, nmodp
e yes: nmod 4, 47 — 3j

25



github.com/illinois-ceesd /nuwest-mirge

A Taste of Loopy

Demo: A Taste of Loopy

26



github.com/illinois-ceesd /nuwest-mirge

What is an array container?

A thing that can contain actx arrays and other array containers

>
> Allows “serialization” and “deserialization”, i.e. generic traversals
> Allows nested data structures

> E.g.:

e structure-like (ConservedVars, TracePair)

e array-like (DOFArray, object array)

v

Defined in arraycontext

v

Works with many ArrayContext operations

27



The Case for OpenCL

v

Host-side programming interface (library)
Device-side programming language (C)
Device-side intermediate repr. (SPIR-V)

Same compute abstraction as everyone else
(focus on low-level)
Device/vendor-neutral

e On current and upcoming leadership-class machines
e Will run even with no GPU in sight (e.g. Github CI)

Just-In-Time compilation built-in

Open-source implementations
(Pocl, Intel GPU, AMD¥*, rusticl, clover)

Mostly retain access to vendor-specific libraries/capabilties

28

github.com/illinois-ceesd /nuwest-mirge

7 A
OpenCL

[Khronos Group]



Uncooperative vendor?

>
>

OpenCL commoditizes compute

Not universally popular with vendors

» Not an unchangeable fate
pocl-cuda:
> Based on nvptx LLVM target from Google

vVvvyVvVvyy

Started by James Price (Bristol)
Maintained by a team at Tampere Tech U
We at lllinois helped a bit

LLVM keeps improving

Possible to talk to CUDA libraries

Allows profiling

29

github.com/illinois-ceesd /nuwest-mirge

pocl vs NVIDIA driver for SHOC (Titan X)

Performance (relative to NVIDIA)
s 3 8 8 8 3

u,,,_

[http://portablecl.org/cuda-backend.html]

[http://portablecl.org/pocl-1.6.html]


http://portablecl.org/cuda-backend.html
http://portablecl.org/pocl-1.6.html

github.com/illinois-ceesd /nuwest-mirge

PyOpenCL

PyOpenCL has
» Direct access to low-level OpenCL

e Efficiency-minded: compiler cache, kernel enqueue
e Made safe for use with Python
(e.g. ‘nanny events’, deletion semantics)

» A bare-bones numpy-like array type

e Parallel RNGs, indexing
e Numpy-like, but limited broadcasting, most operations are 1D

» Foundational algorithm templates

* Reduction, scan, sort (radix, bitonic), unique, filter, CSR build OpenCL

https://github.com/inducer/pyopencl aso: pycupa

[Khronos Group, python.org]

30


https://github.com/inducer/pyopencl

github.com/illinois-ceesd /nuwest-mirge

The Case for Python

Frees up mental bandwidth. ..
for the actually difficult bits
How?
» Not shiny, not exciting

» No/few distractions
e Duck typing, automatic memory management

Emphasizes readability
Rich ecosystem of sci-comp related software

Good for gluing: less reinventing

[python.org]

Easy to deploy

vVvyyvyyvyy

‘Fast enough’ for logistics and code generation

31



	MIRGE
	Code-Along

