
The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

MIRGE: Math → IR → Generation → Execution

Andreas Kloeckner

University of Illinois

January 18, 2024

1



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Outline
MIRGE

Code-Along

2



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

“Programming HPC Machines is Hard”

[McCalpin, Memory Bandwidth and System Balance in HPC Systems, SC16]

CPUs, GPUs: all subject to similar design pressures
3



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

HPC: What do you mean?

Goal:
▶ Build a quantitative understanding of what is possible

• I.e. use modeling, supported by tools
▶ Iteratively approach that limit, with human involvement

• I.e. not a black-box compiler
• Expect some exposed wiring: understanding required
• Use modeling as a guide

MIRGE: Ideas and tools to. . .
▶ increase human effectiveness and efficiency
▶ help with separation of concerns

[OpenClipart / raulxav]

4



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

A Glimpse of Some Results

P1 P2 P3

0

250

500

750

1000

1250

1500

1750

2000

G
F

lO
ps

/s

PyOpenCL JAX Pytato Roofline

(Simplicial DG for a Compressible Navier-Stokes Operator on Titan V)

5



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

MIRGE: Stages of a Computation
Stage 1: Capture an Array DFG Array Context → Pytato
▶ Goal: Build an Array-Valued Data Flow Graph (DFG)

• By tracing execution of a numpy-ish array program
▶ Use Lazy Evaluation to do so:

• Feed in (symbolic) placeholder data
• Return an opaque value that ‘remembers’ what was done

Stage 2: Transform the DAG Array Context and Pytato
▶ E.g. fold constants, apply math simplifications

Stage 3: Rewrite to Scalar IR Pytato → Loopy
▶ Introduce time, memory, loops

Stage 4: Scalar IR Transformations Array Context and Loopy
▶ E.g. parallelize, loop/kernel fusion

Stage 5: Emit Target Code Loopy → OpenCL

B = f(A) C = g(B)
E = f(C) F = h(C)

G = s(E,F) P = p(B)
Q = q(B) R = r(G,P,Q)

6



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Numpy: Array programming
Numpy is an array programming language.

What can you do with that?
▶ a + b - 3
▶ a[:, 4].reshape(10, 1) + b
▶ Compute pairwise distances between point clouds
▶ a[i] where i is an array of indices
▶ a>3
▶ np.where(a > 3, 0, 1)
▶ np.einsum("ij,j->i", a, b)
▶ np.sum(a, axis=0)
▶ np.concatenate((a, b), axis=0)

If familiar: a little like ‘fully vectorized Matlab’

[XRay Project]

7



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

User-Visible Restrictions (the “-ish” in numpy-ish)

[Bootstrap Icons]

▶ Data is computed lazily
• “Looking at the data” costly: ask expliclitly (freeze)
• Fine: np.where(x > 15, 1, 0)
• Not fine: if x[0] > 15: print("BAD")

▶ “In-place” modification is not allowed
• Once created, an array is constant

▶ Looping over an array is very costly
• Resulting DAG will be proportional to array size

▶ Does not encode memory layout (i.e. no stride trickery)
▶ For code with pre-recorded traces (“compiled”):

• Python code is only run once
• Needed for repeated tasks (e.g. time step)
• Cannot look at data (run with placeholder arrays)

8



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Numpy Switcheroo: Array Context
Replacing numpy:
▶ NOT: import numpy as np → import mystuff as np
▶ INSTEAD: actx.np.zeros(...)

Why?
▶ ‘Real’ numpy used alongside, e.g. by supporting libraries
▶ Avoids np.mystuff(...): The numpy namespace belongs to numpy.

• Natural place for additional API: E.g. actx.freeze()

▶ Avoids global state for device selection (e.g. Jax)
▶ Can be subclassed by user to supply transform strategies

(actx is a user-controlled instance of a user-controlled subclass of
ArrayContext.)

[Bootstrap Icons]

9



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

The Case for Code Transformation

[Bootstrap Icons]

▶ Program is a data structure
▶ Start with ‘math’ (≈ numpy)
▶ Gradually add detail
▶ Annotations descriptive, not prescriptive

As opposed to:
▶ Directives (a la OpenMP/OpenACC)
▶ Libraries

Properties:
▶ Separation of concerns:

additive rather than multiplicative effort
▶ Conciseness: code is the enemy
▶ Abstraction:

not specifying details prematurely is a virtue
10



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

The Case for Just-in-Time Compilation

[Bootstrap Icons]

▶ What is ‘compile time’?
▶ At runtime is when you have the most information

• Target device
• Desired problem

▶ JIT gives ability to specialize for available knowledge
▶ Avoids false trade-off beetween generality and cost

(“abstraction penalty”)
▶ Challenge: JIT cost must remain under control

• At least: Caching easily avoids repeated expense

11



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Loopy: A Glimpse

ai =
Nq∑
j=1

wj∂ψi(xj)

NDoF∑
k=1

uk∂ϕk(xj)



knl = lp.make_kernel(
"{[e,i,j,k]: 0<=e<nelements and 0<=i,k<ndofs and 0<=j<nq}",
"""
quad(e, j) := sum(k, u[k,e] * phi[k, j])
a[e,i] = sum(j, w[j] * psi[i,j] * quad(e, j))
""")

Transformations:
knl = lp.split_iname(knl, "e", 128)
knl = lp.tag_inames(knl, {"e_outer": "g.0"})

github.com/inducer/loopy
12



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

In the Code-Along

Roadmap for the code-along:
▶ Let’s code a mini pytato

• Expression trees/graphs as program representation
• Lowering to loopy

▶ Let’s build a finite difference solver with the MIRGE stack
▶ Getting your feet wet with Loopy

13



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Outline
MIRGE

Code-Along

14



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Getting on the Jupyterhub

▶ Primary (NCSA)
https://ceesd.class.ncsa.illinois.edu/jupyter/
User / Password from paper snippets

▶ Fallback (Homebrew)
https://andreask.cs.illinois.edu/nuwest
User name: Pick your favorite! / Password: (announced if needed)

15

https://ceesd.class.ncsa.illinois.edu/jupyter/
https://andreask.cs.illinois.edu/nuwest


The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Building a Mini Pytato

Notebook: Mini Pytato

16



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Lessons from Mini Pytato

▶ Graphs are an appropriate data structure for expressions
▶ A shape axis becomes a loop
▶ Processing graphs is necessarily recursive
▶ Naive handling of common subexpressions leads to exponential complexity

17



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Array Comprehensions / IndexLambda

Observation: To define an array, just need
▶ shape
▶ a (scalar) expression for array entry array[i,j].

Examples:
▶ A 10 × 5 array defined by (i, j) 7→ 3i+ 5j
▶ A 10 × 10 array defined by (i, j) 7→ δi,j

▶ A 10 × 10 array defined by (i, j) 7→ a[i, j] + b[i]
Idea: Use that
▶ as a large part of the intermediate representation
▶ as a pathway toward code generation

(many operations “lower” to scalar expressions)

18



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Pytato vs Mini Pytato

▶ Computations with multiple results
(DictOfNamedArrays)

▶ Constants (DataWrapper)
▶ Many more operators, functions
▶ Arbitrary shapes (including symbolic)
▶ Broadcasting
▶ Slicing, Indexing

▶ Reductions (e.g. sums over axes)
▶ einsum, matrix products
▶ Metadata (“tags”) on arrays, axes
▶ Visualization
▶ Distributed compute
▶ “Call loopy” as an expression node

19



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Let’s code finite differences

Notebook: Finite Difference Code-Along

20



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

What is an array context?

▶ actx.np
▶ actx.freeze / actx.thaw
▶ actx.np.zeros
▶ actx.from_numpy / actx.to_numpy
▶ actx.tag / actx.tag_axis
▶ actx.compile(f)

21



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

What happens in PytatoPyOpenCLACtx.compile(f)?

Returns a function that
▶ once called, looks at arguments passed (which maybe array containers)
▶ replaces actx arrays with placeholders
▶ Calls f with those placeholders
▶ Take the resulting pytato DAG, feed to Loopy
▶ Lastly, call the generated loopy code with the passed arguments

• Return results as actual data (pyoepncl arrays)
▶ If called again with arguments of matching type/shape:

• do not call f
• go straight to calling generated code

22



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

What happens in PytatoPyOpenCLACtx.freeze?

▶ Simple: build code to evaluate computation graph
• Return result as actual data

▶ No placeholders, only DataWrapper (=constant) instances
• thaw: package data in a DataWrapper

▶ Try to avoid redundant code generation
• But: expensive! Always at least need to compare (and therefore, traverse!) graphs

▶ Potential gotchas
• Freeze same graph again: redundant codegen, computation
• Freeze superset graph: redundant codegen, computation

23



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

What and why: polyhedral?
Loop nest

do i = 1,n
do j = 1,n

do k = 1,n-i-k
A(i,j,k) = ...
B(i,j,k) = ...

end do
end do

end do

Polyhedron

{[i,j,k]:0 <= i,j < n and... }

S. Verdoolaege “isl: An integer set library for
the polyhedral model.” International Congress
on Mathematical Software. Springer, Berlin,
Heidelberg, 2010
github.com/inducer/islpy24



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Not just sets: also dependencies
Loop domain: {(i, j) : 0 ≤ i, j ≤ 4 ∧ i ≤ j} ⊂ Z2

Parametric loop domain: n 7→ {(i, j) : 0 ≤ i, j ≤ n ∧ i ≤ j} ⊂ Z3

Dependencies: {((i, j), (i′, j′)) : . . . } ⊂ Z4

+ parameter: n 7→ {((i, j), (i′, j′)) : . . . } ⊂ Z5

▶ Way to represent
• sets of integer tuples
• graphs on sets of integer tuples

and operate on them:
Π, ∩, ∪, ◦, ⊂?, \, min, lexmin

▶ parametrically
▶ need decidability: (quasi-)affine expr.

• no: i · j, n mod p
• yes: n mod 4, 4i− 3j

25



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

A Taste of Loopy

Demo: A Taste of Loopy

26



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

What is an array container?

▶ A thing that can contain actx arrays and other array containers
▶ Allows “serialization” and “deserialization”, i.e. generic traversals
▶ Allows nested data structures
▶ E.g.:

• structure-like (ConservedVars, TracePair)
• array-like (DOFArray, object array)

▶ Defined in arraycontext
▶ Works with many ArrayContext operations

27



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

The Case for OpenCL
▶ Host-side programming interface (library)
▶ Device-side programming language (C)
▶ Device-side intermediate repr. (SPIR-V)

▶ Same compute abstraction as everyone else
(focus on low-level)

▶ Device/vendor-neutral
• On current and upcoming leadership-class machines
• Will run even with no GPU in sight (e.g. Github CI)

▶ Just-In-Time compilation built-in
▶ Open-source implementations

(Pocl, Intel GPU, AMD*, rusticl, clover)
▶ Mostly retain access to vendor-specific libraries/capabilties

[Khronos Group]

28



The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

Uncooperative vendor?

▶ OpenCL commoditizes compute
▶ Not universally popular with vendors
▶ Not an unchangeable fate

pocl-cuda:
▶ Based on nvptx LLVM target from Google
▶ Started by James Price (Bristol)
▶ Maintained by a team at Tampere Tech U
▶ We at Illinois helped a bit
▶ LLVM keeps improving
▶ Possible to talk to CUDA libraries
▶ Allows profiling

[http://portablecl.org/cuda-backend.html]

[http://portablecl.org/pocl-1.6.html]

29

http://portablecl.org/cuda-backend.html
http://portablecl.org/pocl-1.6.html


The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

PyOpenCL

PyOpenCL has
▶ Direct access to low-level OpenCL

• Efficiency-minded: compiler cache, kernel enqueue
• Made safe for use with Python

(e.g. ‘nanny events’, deletion semantics)
▶ A bare-bones numpy-like array type

• Parallel RNGs, indexing
• Numpy-like, but limited broadcasting, most operations are 1D

▶ Foundational algorithm templates
• Reduction, scan, sort (radix, bitonic), unique, filter, CSR build

https://github.com/inducer/pyopencl Also: PyCUDA

[Khronos Group, python.org]

30

https://github.com/inducer/pyopencl


The Center for 
Exascale-enabled Scramjet Design CEESD

github.com/illinois-ceesd/nuwest-mirge

The Case for Python

Frees up mental bandwidth. . .
for the actually difficult bits

How?
▶ Not shiny, not exciting
▶ No/few distractions

• Duck typing, automatic memory management
▶ Emphasizes readability
▶ Rich ecosystem of sci-comp related software
▶ Good for gluing: less reinventing
▶ Easy to deploy
▶ ‘Fast enough’ for logistics and code generation

[python.org]

31


	MIRGE
	Code-Along

