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“Programming HPC Machines is Hard”
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Memory Bandwidth is falling
behind Peak FLOPS rates,
but every other kind of
memory access is falling
behind even faster....
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[McCalpin, Memory Bandwidth and System Balance in HPC Systems, SC16]

CPUs, GPUs: all subject to similar design pressures
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HPC: What do you mean?

Goal:
» Build a quantitative understanding of what is possible
e |.e. use modeling, supported by tools
> lteratively approach that limit, with human involvement

e l.e. not a black-box compiler
o Expect some exposed wiring: understanding required |
e Use modeling as a guide

MIRGE: Ideas and tools to. .. [OpenClipart / raulxav]
> increase human effectiveness and efficiency

> help with separation of concerns
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A Glimpse of Some Results
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B PyOpenCL B JAX B Pytato B Roofline

(Simplicial DG for a Compressible Navier-Stokes Operator on Titan V)



MIRGE: Stages of a Computation

Stage 1: Capture an Array DFG Array Context — Pytato
» Goal: Build an Array-Valued Data Flow Graph (DFG)
e By tracing execution of a numpy-ish array program
» Use Lazy Evaluation to do so:

e Feed in (symbolic) placeholder data
e Return an opaque value that ‘remembers’ what was done

Stage 2: Transform the DAG Array Context and Pytato
> E.g. fold constants, apply math simplifications

Stage 3: Rewrite to Scalar IR Pytato — Loopy
P Introduce time, memory, loops

Stage 4: Scalar IR Transformations Array Context and Loopy
> E.g. parallelize, loop/kernel fusion

Stage 5: Emit Target Code Loopy — OpenCL
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B=f(A) C=g(B)

E=f(C) F=h(C)
G=s(EF) P=pB)
Q=q(B) R=r(GPQ)



Numpy: Array programming

Numpy is an array programming language.

What can you do with that?

>

vVvvyvVvYVvyyypy

>

a+b-3

al:, 4] .reshape(10, 1) + b

Compute pairwise distances between point clouds
a[i] where i is an array of indices

a>3

np.where(a > 3, 0, 1)
np.einsum("ij,j->i", a, b)

np.sum(a, axis=0)

np.concatenate((a, b), axis=0)

If familiar: a little like ‘fully vectorized Matlab’
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[XRay Project]
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User-Visible Restrictions (the “-ish” in numpy-ish)

» Data is computed lazily

e “Looking at the data” costly: ask expliclitly (freeze)
e Fine: np.where(x > 15, 1, 0)
e Not fine: if x[0] > 15: print("BAD")
» “In-place” modification is not allowed
e Once created, an array is constant
> Looping over an array is very costly
e Resulting DAG will be proportional to array size

» Does not encode memory layout (i.e. no stride trickery)
[Bootstrap Icons] » For code with pre-recorded traces (“compiled”):
e Python code is only run once
o Needed for repeated tasks (e.g. time step)
e Cannot look at data (run with placeholder arrays)
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Numpy Switcheroo: Array Context
Replacing numpy:

» NOT: import numpy as np — import mystuff as np
» INSTEAD: actx.np.zeros(...)

Why?
» ‘Real’ numpy used alongside, e.g. by supporting libraries
> Avoids np.mystuff(...): The numpy namespace belongs to numpy.
e Natural place for additional API: E.g. actx.freeze()

> Avoids global state for device selection (e.g. Jax)

i Bootstrap lcons
» Can be subclassed by user to supply transform strategies [ !

(actx is a user-controlled instance of a user-controlled subclass of
ArrayContext.)
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The Case for Code Transformation

» Program is a data structure

» Start with ‘math’ (=~ numpy)

» Gradually add detail

» Annotations descriptive, not prescriptive
As opposed to:

» Directives (a la OpenMP/OpenACC)

> Libraries
Properties:

> Separation of concerns:
additive rather than multiplicative effort

[Bootstrap lcons] » Conciseness: code is the enemy

» Abstraction:
not specifying details prematurely is a virtue

10



github.com/illinois-ceesd /nuwest-mirge

The Case for Just-in-Time Compilation

» What is ‘compile time'?
» At runtime is when you have the most information

e Target device
e Desired problem

v

JIT gives ability to specialize for available knowledge

v

Avoids false trade-off beetween generality and cost
(“abstraction penalty”)

» Challenge: JIT cost must remain under control
e At least: Caching easily avoids repeated expense

[Bootstrap Icons]
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Loopy: A Glimpse

Npor
ijadjl 33] (Z Uka¢k x]))

7=1

knl = 1lp.make_kernel(
"{[e,i,]j,k]: O<=e<nelements and 0<=i,k<ndofs and 0<=j<nqg}",
quad(e, j) := sum(k, ulk,e] * philk, jI)
ale,i] = sum(j, wl[jl * psili,j] * quad(e, j))
||||||)

Transformations:

knl
knl

lp.split_iname(knl, "e", 128)
lp.tag_inames(knl, {"e_outer": "g.0"})

github.com/inducer/loopy
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In the Code-Along

Roadmap for the code-along:
> Let's code a mini pytato

e Expression trees/graphs as program representation
e Lowering to loopy

> Let's build a finite difference solver with the MIRGE stack
> Getting your feet wet with Loopy

13



github.com/illinois-ceesd /nuwest-mirge

Outline

Code-Along
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Getting on the Jupyterhub

» Primary (NCSA)
https://ceesd.class.ncsa.illinois.edu/jupyter/

User / Password from paper snippets

» Fallback (Homebrew)
https://andreask.cs.illinois.edu/nuwest
User name: Pick your favorite! / Password: (announced if needed)

15


https://ceesd.class.ncsa.illinois.edu/jupyter/
https://andreask.cs.illinois.edu/nuwest

github.com/illinois-ceesd /nuwest-mirge

Building a Mini Pytato

Notebook: Mini Pytato
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Lessons from Mini Pytato

» Graphs are an appropriate data structure for expressions
» A shape axis becomes a loop
» Processing graphs is necessarily recursive

» Naive handling of common subexpressions leads to exponential complexity

17
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Array Comprehensions / IndexLambda

Observation: To define an array, just need

> shape

» a (scalar) expression for array entry array[i, j].
Examples:

» A 10 x 5 array defined by (i,7) — 3i + 5J

» A 10 x 10 array defined by (i, j) — d; ;

» A 10 x 10 array defined by (i, j) — ali, j] + bli]
Idea: Use that

P as a large part of the intermediate representation

> as a pathway toward code generation
(many operations “lower” to scalar expressions)

18
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Pytato vs Mini Pytato

» Computations with multiple results

(DictOfNamedArrays) Reductions (e.g. sums over axes)

einsum, matrix products
Constants (DataWrapper) P

. Metadata (“tags”) on arrays, axes
Many more operators, functions ("tags") y

Visualization

Distributed compute

vVvyvyVvVvyypy

| 2
>
» Arbitrary shapes (including symbolic)
» Broadcasting

>

Slicing, Indexing “Call loopy” as an expression node

19
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Let’s code finite differences

Notebook: Finite Difference Code-Along
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What is

vVvvyVvyVvyy

actx.
actx.
actx.
actx.
actx.

actx.

an array context?

np

freeze / actx.thaw
np.zeros
from_numpy / actx.to_numpy

tag / actx.tag_axis

compile(f)

21
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What happens in PytatoPyOpenCLACtx.compile(f)?

Returns a function that

>

vvyyy

v

once called, looks at arguments passed (which maybe array containers)
replaces actx arrays with placeholders
Calls £ with those placeholders

Take the resulting pytato DAG, feed to Loopy

Lastly, call the generated loopy code with the passed arguments
e Return results as actual data (pyoepncl arrays)

If called again with arguments of matching type/shape:

e do not call £
e go straight to calling generated code

22
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What happens in PytatoPyOpenCLACtx.freeze?

» Simple: build code to evaluate computation graph
e Return result as actual data
» No placeholders, only DataWrapper (=constant) instances
e thaw: package data in a DataWrapper
» Try to avoid redundant code generation
e But: expensive! Always at least need to compare (and therefore, traverse!) graphs
» Potential gotchas

e Freeze same graph again: redundant codegen, computation
o Freeze superset graph: redundant codegen, computation
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What and why: polyhedral?

Loop nest Polyhedron

doi=1,n

do j=1,n
do k = 1,n-i-k
A(i,j,k) =
B(i,j,k) =
end do
end do
end do N

{[i,j,k]1:0 <= i,j < n and... }

S. Verdoolaege "isl: An integer set library for
the polyhedral model.” International Congress
on Mathematical Software. Springer, Berlin,
Heidelberg, 2010

xgithub. com/inducer/islpy
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Not just sets: also dependencies
Loop domain: {(7,5): 0 <i,j <4Ai<j}cCZ?

Parametric loop domain: n+ {(i,§): 0 <i,j <nAi<j}CZ?
Dependencies: {((3,7), (¢',5')) : ...} c Z*
+ parameter: n+— {((i,5), (@', j') : ...} C Z°

> Way to represent
e sets of integer tuples
e graphs on sets of integer tuples
and operate on them:
I, N, U o c’, \, min, lexmin

» parametrically

» need decidability: (quasi-)affine expr.
e no: i-j, nmodp
e yes: nmod 4, 47 — 3j

25
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A Taste of Loopy

Demo: A Taste of Loopy
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What is an array container?

A thing that can contain actx arrays and other array containers

>
> Allows “serialization” and “deserialization”, i.e. generic traversals
> Allows nested data structures

> E.g.:

e structure-like (ConservedVars, TracePair)

e array-like (DOFArray, object array)

v

Defined in arraycontext

v

Works with many ArrayContext operations
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The Case for OpenCL

v

Host-side programming interface (library)
Device-side programming language (C)
Device-side intermediate repr. (SPIR-V)

Same compute abstraction as everyone else
(focus on low-level)
Device/vendor-neutral

e On current and upcoming leadership-class machines
e Will run even with no GPU in sight (e.g. Github CI)

Just-In-Time compilation built-in

Open-source implementations
(Pocl, Intel GPU, AMD¥*, rusticl, clover)

Mostly retain access to vendor-specific libraries/capabilties

28
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7 A
OpenCL

[Khronos Group]



Uncooperative vendor?

>
>

OpenCL commoditizes compute

Not universally popular with vendors

» Not an unchangeable fate
pocl-cuda:
> Based on nvptx LLVM target from Google

vVvvyVvVvyy

Started by James Price (Bristol)
Maintained by a team at Tampere Tech U
We at lllinois helped a bit

LLVM keeps improving

Possible to talk to CUDA libraries

Allows profiling

29
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pocl vs NVIDIA driver for SHOC (Titan X)

Performance (relative to NVIDIA)
s 3 8 8 8 3

u,,,_

[http://portablecl.org/cuda-backend.html]

[http://portablecl.org/pocl-1.6.html]


http://portablecl.org/cuda-backend.html
http://portablecl.org/pocl-1.6.html
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PyOpenCL

PyOpenCL has
» Direct access to low-level OpenCL

e Efficiency-minded: compiler cache, kernel enqueue
e Made safe for use with Python
(e.g. ‘nanny events’, deletion semantics)

» A bare-bones numpy-like array type

e Parallel RNGs, indexing
e Numpy-like, but limited broadcasting, most operations are 1D

» Foundational algorithm templates

* Reduction, scan, sort (radix, bitonic), unique, filter, CSR build OpenCL

https://github.com/inducer/pyopencl aso: pycupa

[Khronos Group, python.org]
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The Case for Python

Frees up mental bandwidth. ..
for the actually difficult bits
How?
» Not shiny, not exciting

» No/few distractions
e Duck typing, automatic memory management

Emphasizes readability
Rich ecosystem of sci-comp related software

Good for gluing: less reinventing

[python.org]

Easy to deploy

vVvyyvyyvyy

‘Fast enough’ for logistics and code generation
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